
1

Ercatons und Organisches
Programmieren mit Java & XML:

Planwirtschaft adé
Falk Langhammer (Intro)
Guido von Walter (Demo)

Oliver Imbusch (Q&A)
Living Pages Research GmbH (München)

2

Table of Contents

I. Things & Organic Software Engineering
II. Ercatons (hands-on)
III. New horizon &

going Open Source ercaton

Enterprise
Java

SQL

Java

XML

Permission
 model

(this is an ercaton)

3

Part I

Organic Programming
(Things & Organic Software Engineering)

“complexity emerges from
simplicity”

4

The Manifesto of
Organic Programming*

The exception is the rule.
§1 Our world is rich and complex

rather than well-structured and simple.
§2 Software must cover irregular, changing patterns

rather than regular patterns.
§3 A software system is an organic being

rather than a set of mathematical algorithms.
§4 Software components are an integral part of our rich world

rather than entities at some meta level.
§5 Complex software emerges when evolving from small to large

rather than from concrete to abstract.

* Living Pages is part of the Organic Computing Initiative www.organic-computing.org

5

Software is complex ...

... isn't it ?
You are sure, aren't you?

Maybe, let's first have a look at ...

...some really complex stuff

6

7

8

9

10

11

12

13

by comparison actually,
software is uncomplex!

(only causing terrible trouble to create)

• Today, (OO) software is regular and planned.
• Today, (OO) software cannot grow to the

complexity of other systems built by humans.
• Today, (OO) software is harder than hardware...
• Today, we got a problem.

14

For example: Enterprise Java (Java EE) delivers
cost-effective and adequate solutions
to approach real-world complexity?
• Actually, it is a mess out there...

• We've seen
1 billion $ projects
for tax software ...
... fail!

Point of failure of
planful software engineering

1/5

15

Point of failure of
planful software engineering

Ladies and Gentlemen,
and now
MDA – Model Driven Architecture
will do the trick?

(automated generation
of working programs
from their blueprints?)

2/5

16

System complexity [in man years to rebuild]O
th

er
 s

ys
te

m
 d

im
en

si
on

s
[p

ro
je

ct
ed

]
Phase transition

for leading software organization principle

OOP objects Documents

Web servicesAgile Manifesto

AOPMDA

Java XML

Organic programming
OO programming Spontaneous evolution

Things (and Cells)

Ercatons

planned

unplanned

Point of failure of
planful software engineering

3/5

17

The failure really is:

True complexity
emerges from simplicity
and cannot be planned

Point of failure of
planful software engineering

4/5

18

complexity emerges from simplicity
even in software engineering!

Point of failure of
planful software engineering

5/5

19

How simple (software) things
can grow complex

Changing reality

Humans

Other things

Simple things

Changing hardware

(software)
“Real-world
feed-back loop
is unbroken.”

20

How simple things
can be defined (1/3)

things are software entities which must behave like
real-world objects as much as possible

If a real-world counterpart is virtual, then
thing and real-world object must be indistinguishable
(bank account, tax declaration document, ...)

things depend on a programming language only
where algorithms get involved

21

Def.: A thing is a self-contained entity,
with identity, behavior, with inner state and structure,
with user† and model‡ interfaces, with ownership and
with self-determined lifecycle and privacy,
in both software and reality.

Def.: A cell is a thing which may act w/o external stimulus.

†: we can touch, see and manipulate
‡: we can abstract, in order to think about or to code algorithms

How simple things
can be defined (2/3)

22

Why software can be harder
than hardware:

• Assuming screws being things,
(which may be shortened in the field)

• then Java classes aren't things!
(cannot be modified in the field)

Is why OO isn't thing-oriented.
Is why OO breaks the real-world loop.

How simple things
can be defined (3/3)

23

Such a simple thing?

• most simple thing example
which may possibly work:

Let's count votes
e.g., George W. Bush vs. Al Gore ...

• Time for a quick demo :)

24

Such a simple thing!
and our 1st ercaton – both document & object

<?xml version="1.0"?>
<census>
 <election>US 2000</election>
 <district>
 Mission Bay, San Diego, California
 </district>
 <bush>1</bush>
 <gore>2</gore>
</census>

25

Such a simple thing – but no simpler

<?xml version="1.0" encoding="utf-8"?>
<census xmlns:erc="http://ercato.com/xmlns/ErcatoCore">
 <erc:id>~falk/census</erc:id>
 <election>US 2000</election>
 <district>

 Mission Bay, San Diego, California
</district>

 <bush>1</bush>
 <gore>2</gore>
 <erc:action name="Gore">
 /bin/increment <erc:arg name="xpath"> //gore </erc:arg>
 </erc:action>
 <erc:action name="Bush">
 /bin/increment <erc:arg name="xpath"> //bush </erc:arg>
 </erc:action>
</census>

26

• What we got...

... a transaction-safe
system with
persistence and a user
interface to count the
votes of Bush and
Gore.

... which may be
changed arbitrarily
while in operation!

Such a simple thing – the GUI

27

• Provides something which is and feels as simple as a screw,
in order to assemble arbitrarily complex systems from.

• The creation of software is like building,
not like modelling, generating or programming.

• Preserves all the inherent potential for organic growth
which is present in our natural way of “building with things”.

• Confines programming to
the purely algorithmic parts of a solution, there to be reused.

Such a simple thing – achievements

28

Part II

ercatons

“everything is a thing,
by definition”

29

ercaton

Enterprise
Java

SQL

Java

XML

Permission
 model

ercatons “implement” things

ercatons are things based on XML and, e.g. Java

ercatons encapsulate state and behavior

ercatons are business objects

ercatons are documents

ercatons merge many older ideas
into one unified concept

(ercato specification is a virtual machine contract for execution)

30

ercato specification summary

Def.: An ercaton is a thing, with at least,
a model interface to XML,
with inheritance and polymorphism,
with a mutable web user-interface,
with behaviour bound to XSLT and a Java-like language,
with database and transaction support and
with autonomous life (cell).

This means that an ercaton stands up for itself, e.g., it does not depend on
a class, that it has a unique name and is persistent and protected, and
that each ercaton is an individual entity where no two are equal

Named after mercato and elementary particle convention (electron)

31

ercaton

Enterprise
Java

SQL

Java

XML

Permission
 model

ercatoJ virtual machine summary
ercatons ...

• ... are protected by transactions and permissions and
... are supported by indexing in a database.

• ... support SQL-like queries with inner and outer joins.

• ... are persistent and versioned.

• ... dynamically inherit allowing extraction
 of common parts of the business logic.

• ... have user interfaces by target pipes.

• ... may be binary “resource” ercatons;
 i.e., code (Java) may change at runtime.

• ... have owners and a capability chain to
 protect their state.

32

ercatoJ hierarchy
business processes:
customers
recipes, machines, goods, ...
status propagation, workflows
trigger external systems
check business validity
etc. ercatoX standard extensions: (erx)

user interface management
standard services (cp, check, edit, etc.)
administration tools (backup etc.)
etc.ercatoJ machine: (erc)

ercatons
permissions, transactions
actions, clones, versions
xml interchange
webservices
http (browser) access
etc.

EJBs

service
ercatons

business
ercatons

33

ercatoJ vm made by Living Pages:

(1) Ercatons are mapped onto Enterprise JavaBeans (EJBs).
(2) Powerful algebra for XML which maps OO principles to math ops.
(3) Behaviour of ercatons expressed in both Java and/or XSLT.
(4) WebServices and plain XML exchange available, e.g. for SAP/R3.
(5) Naked ercatons, user interface web-based, console via esh, or Swing-RC.
(6) Everything may be an ercaton, incl. images and binary code.
(7) Complex database schemes are generated and kept synchronized.

ercatoJ

enterprise solution

SAP R/3
J2EE application server

Operating system + SQL database

34

Other simple demo examples

Task: Design & implementation of
an “Address Manager” application,

then growed to an “Invoice Manager”.

Detail: Enterprise-quality and extensible

Budget: ... 15 person minutes for part 1
... ~1 day for part 2
(demonstrated during DMS 2006!)

here we go...

35

~falk/bunny is an ercaton

<?xml version="1.0" encoding="iso-8859-1"?>
<address
xmlns:erc="http://ercato.com/xmlns/ErcatoCore">

<erc:id>~falk/bunny</erc:id>
<erc:clone>~livis/adr/base</erc:clone>
<name >Easter Bunny</name>
<street >Wiese 7</street>
<zipcode >12345</zipcode>

 <phone >0190 666 666</phone>
</address>

36

~falk/bunny and (4) friends

37

~livis/adr/base : class or template?
<?xml version="1.0" encoding="utf-8"?>
<address xmlns:erc="http://ercato.com/xmlns/ErcatoCore"
 xmlns:erx="http://ercato.com/xmlns/ErcatoExtensions">

<erc:id>~livis/adr/base</erc:id>
<erc:type>prototype</erc:type>
<erc:catalog category="/Address" id-ref="~livis/catalog"/>

<name erx:field-ref="string" erc:index="~livis/catalog"/>
<street erx:field-ref="string" erc:index="~livis/catalog"/>
<zipcode erx:field-ref="int" erc:index="~livis/catalog"/>
<city erx:field-ref="string" erc:index="~livis/catalog"/>
<phone erx:field-ref="string"/>

<erc:action name="edit"> /bin/edit </erc:action>
<erc:action name="delete"> /bin/rm!wizard </erc:action>
<erc:action name="copy"> /bin/cp!forEdit </erc:action>
<erc:action name="check"> ~livis/check.xsl

<erc:arg name="default">San Diego</erc:arg>
</erc:action>
<erc:trigger name="on-change">!check</erc:trigger>

</address>

38

Invoice manager

39

A deployed corporate solution...

• Browser based intranet
solution

• J2EE server application

Features:

• Document-centric, versioned

• Efficient configurable data
mining

• Generated user interface

• “Better than html” controls

• Comprehensible
implementation of workflow

(screenshot: courtesy of Henkel Fragrance Center GmbH)

40

Another deployed solution...

• Rich intranet client
• J2EE server application

Features:

• Solution archive

• Complex business rule set

• Busines rule factory in Java

• Generated “Rich Client”

• Powerful output mngmnt.
multi-language/
multi-format (PDF, CAD,...)

• Developed by customer

41

Part III

New Horizon &
going Open Source

“ideas are
unanticipated”

42

Patterns we did not expect
• Builder ercatons.
• Aspect weavers.
• Self protection and healing.
• Repackaging pattern.
• Separation of “text” and “data” re-emerges as a pattern:

• The “firewall” pattern

• Agent ercatons (after adding a “goal”).
• Autonomous evolution:

• Cross combination is just another XML operator.

• Mutations don't hurt algorithms.

• Selection by observer (“Other” ercatons or user).

• ...

43

going Open Source
Open source project ercato.org considered

• License model:
• GNU source code model

• No constraint on consultancy business models

• Constraint on competing commercial re-implementations

• Pre condition:
• 95% feature list completion

• 80% documentation completion

• Evidence of external interest

Problem: ercatons are massive innovation where
open source projects typically copy existing stuff.

44

Conclusion

Turns software engineers into creators rather than programmers.
Large, complex systems are feasible and stay to grow organically.
It is saving lot of time and money.
Organic software engineering

exists and works!

“Ercatons were easy to use
and breathtakingly efficient.
Once you get the idea you
wonder how you ever worked
without it.”

Dr. Ralf Marsula
Senior Consultant
Clavis berater sozietät GmbH, Bremen

P.S. The specification is open,
the ercatoJ implementation is free
for research partners,
an open-source project is considered.

“Maybe someday all
large-scale objects
will be Ercatonical.”

David Ungar
Principal Investigator
Sun Labs, Mountain View

45

Conclusion

Turns software engineers into creators rather than programmers.
Large, complex systems are feasible and stay to grow organically.
It is saving lot of time and money.
Organic software engineering

exists and works!

“Ercatons were easy to use
and breathtakingly efficient.
Once you get the idea you
wonder how you ever worked
without it.”

Dr. Ralf Marsula
Senior Consultant
Clavis berater sozietät GmbH, Bremen

P.S. The specification is open,
the ercatoJ implementation is free
for research partners,
an open-source project is considered.

“Maybe someday all
large-scale objects
will be Ercatonical.”

David Ungar
Principal Investigator
Sun Labs, Mountain View

